If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2+3b-126=0
a = 3; b = 3; c = -126;
Δ = b2-4ac
Δ = 32-4·3·(-126)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-39}{2*3}=\frac{-42}{6} =-7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+39}{2*3}=\frac{36}{6} =6 $
| 20=3m+11 | | q/2=28 | | 7(x+4)=5(2x+6)-2 | | -5+9s=10s | | -0.9-m=13.1 | | 5w-2=17 | | 7(-6+4y)-10y=3 | | 1=2t−3 | | 15x+10x=-1/3 | | 4g=3g-9 | | 3/5x=1/3x= | | x+21-1/3x=9 | | 3x-1=6x14 | | A=1/2h(6.8+3) | | 20-3*n=8 | | 2m+12=5m−18 | | 23-8m=-15m-40 | | 7m^2-42m-49=0 | | 3b+15=7b-9 | | 10n-10=13n+5 | | 5/3+2/5+x=3 | | (11x+20)=180 | | 5a+13=7a-3 | | x+x+10=140 | | 3b+15=7b−9 | | 75x=180 | | b5=20;b=3 | | 7=4(x+3) | | 9/27=x/81 | | 8=5z/3-2 | | 14.5=n-0.3 | | 35+9.95x=15+13.95x |